Chapitre 4.

Trigonométrie

1- COSINUS ET DU SINUS D'UN ANGLE DANS UN TRIANGLE RECTANGLE :

Historiquement, les cosinus, sinus et tangente d'un angle ont été définis de la manière suivante :

Comme la longueur de l'hypoténuse est toujours supérieure à celles des côtés opposés ou adjacents, on peut en déduire que $cos(\theta)$ et $sin(\theta)$ sont toujours inférieurs à 1.

sin θ = Opposé **H**ypoténuse $\cos \theta = Adjacent$ **Opposé H**ypoténuse tan θ = Opposé Adjacent Adjacent

D'autre part, si on calcule :
$$(\cos(\theta))^2 + (\sin(\theta))^2$$

On obtient :
$$\left(\frac{Adjacent}{Hypoténuse}\right)^2 + \left(\frac{Opposé}{Hypoténuse}\right)^2$$

Ce qui donne :
$$\frac{Adjacent^2 + Opposé^2}{Hypoténuse^2}$$

D'après le théorème de Pythagore :
$$Adjacent^2 + Opposé^2 = Hypoténuse^2$$

On a donc finalement :
$$\left(\cos(\theta)\right)^2 + \left(\sin(\theta)\right)^2 = \frac{Hypoténuse^2}{Hypoténuse^2} = 1$$

Point Cours:

- $\cos(\theta)$ et $\sin(\theta)$ sont toujours inférieurs à 1
- $\cos(\theta)^2 + \sin(\theta)^2 = 1$

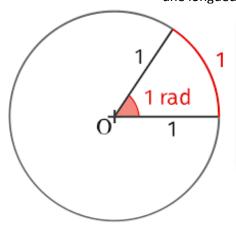
2- United des angles :

Depuis l'antiquité, l'unité utilisée pour mesurer des angles était le *degré*. Ce n'est qu'à la fin du 19^{ième} siècle

que l'on utilise le radian. Cette nouvelle unité est impérative lorsque l'on dérive ou intègre les fonctions cosinus et sinus. On l'utilise ainsi en sciences physiques.

Un angle de 1 radian est obtenu en enroulant sur un cercle une longueur égale à son

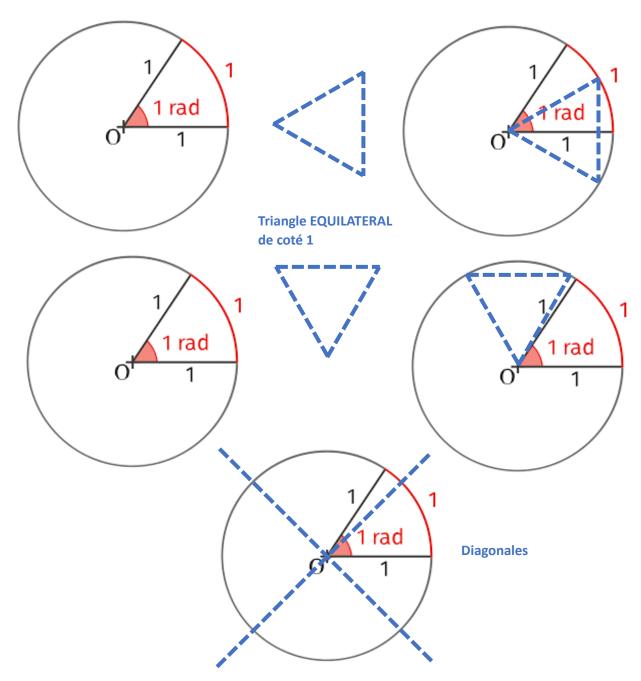
Si on raisonne sur un cercle dont le rayon est égal à 1, on obtient 1 radian en enroulant une longueur de 1 sur le cercle.



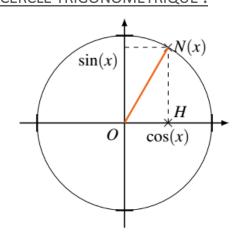
- <u>Point Cours</u>: Un cercle de rayon 1, centré sur l'origine d'un repère est appelé CERCLE TRIGONOMETRIQUE
 - Le périmètre d'un cercle trigonométrique est égal à 2π

3- ANGLES REMARQUABLES:

Les angles en radians ne sont pas nécessairement compris entre 0° et 90°. Un angle θ en radians pourra prendre n'importe quelle valeur réelle : $\theta \in]-\infty$; $+\infty[$. Parmi toutes ces valeurs possibles, certaines sont dites remarquables. Elles correspondent aux équivalents en degrés des angles 0°, 30°, 60° et 90°.



4- COSINUS ET SINUS D'UN ANGLE SUR UN CERCLE TRIGONOMETRIQUE :

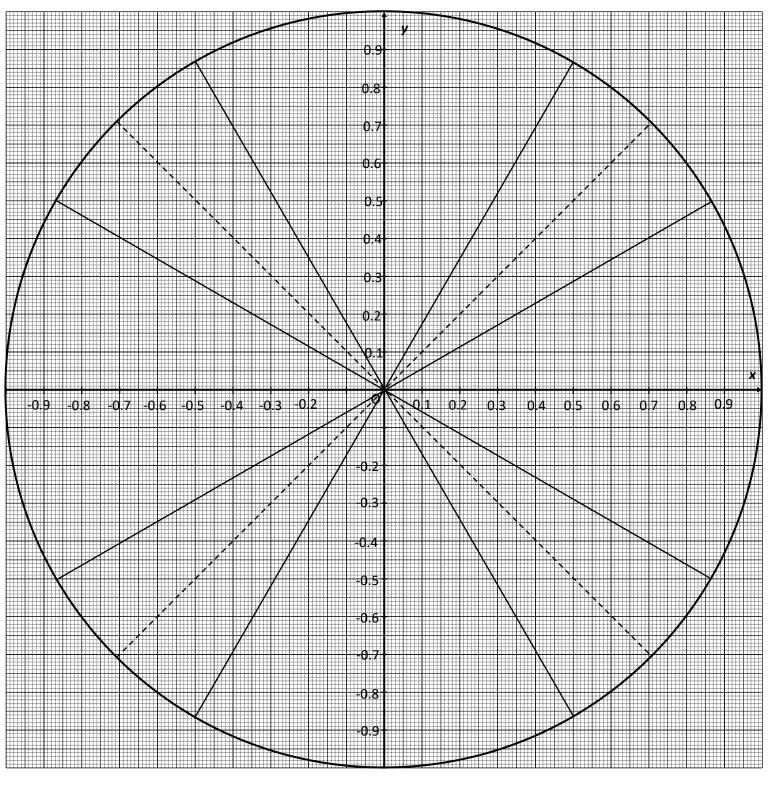


Point Cours:

Soit un point N du cercle trigonométrique repéré par un angle noté x et exprimé en radians :

- cos (x) prend la valeur de l'abscisse de ce point,
- o sin (x) prend la valeur de l'ordonnée de ce point.

5- COSINUS ET SINUS DES ANGLES REMARQUABLES :



Angle θ en °	0°		30°		45°		60°		90°		120°		135°		150°		180°	
Angle θ en <i>rad</i>																		
cos (θ)																		
sin (θ)																		

<u>Point Cours</u>: On doit toujours avoir $\cos^2(x) + \sin^2(x) = 1$. Ainsi:

o
$$si cos(x) = 1$$
 alors $sin(x) = 0$ car $1^2 + 0^2 = 1$

o si
$$cos(x) = \frac{1}{2}$$
 alors $sin(x) = \frac{\sqrt{3}}{2} car \left(\frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2 = 1$

o si
$$cos(x) = sin(x)$$
 alors $cos(x) = \frac{\sqrt{2}}{2} car \left(\frac{\sqrt{2}}{2}\right)^2 + \left(\frac{\sqrt{2}}{2}\right)^2 = 1$

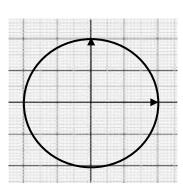
6- MESURE PRINCIPALE D'UN ANGLE :

<u>Point Cours</u>: La mesure principale d'un angle θ est celle qui repère le même point sur le cercle trigonométrique, mais avec une valeur comprise entre $-\pi$ et π .

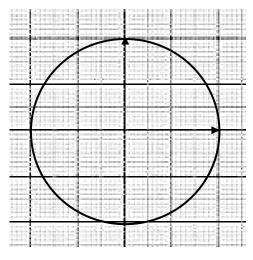
Exemple : Mesure principale de l'angle $\frac{35 \pi}{2}$

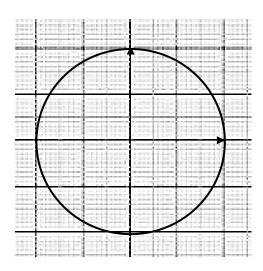
$$\frac{35\,\pi}{2} \ = \ -\frac{\pi}{2} + \frac{36\,\pi}{2} \ = \ -\frac{\pi}{2} + \ 9 \times 2\pi$$

Ainsi les angles $\frac{35\,\pi}{2}$ et $-\frac{\pi}{2}$ repèrent le même point sur le cercle trigonométrique. La mesure principale de $\frac{35\,\pi}{2}$ est donc $-\frac{\pi}{2}$.



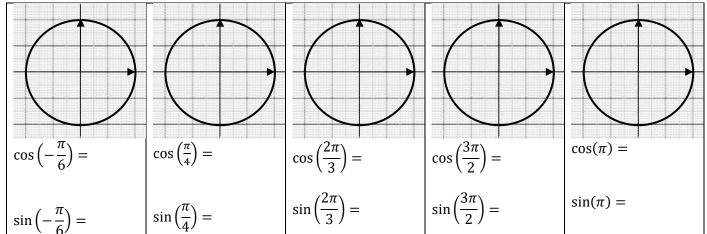
7- EGALITES A CONNAITRE:

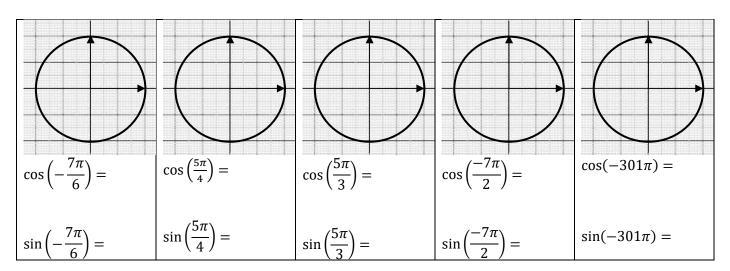




8- EXERCICES:

Exercice 1 : Angles remarquables : Compléter le tableau ci-dessous en repérant l'angle défini sur le cercle trigonométrique et en donnant les valeurs du cosinus et du sinus de cet angle.





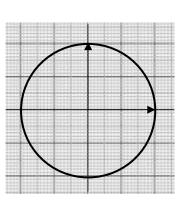
Exercice 2:

- a) Convertir en degrés, la mesure suivante exprimée en radians : $\frac{7\pi}{6}$
- b) Convertir en radians sous la forme $\frac{a\pi}{b}$ ($\frac{a}{b}$ irréductible), la mesure suivante exprimées en degrés : 20°

Exercice 3: \Rightarrow Placer les points A, B, C, D et E associés **respectivement** aux angles x suivants, sur le cercle trigonométrique ci-contre :

$$x = 9 \pi$$
; $x = \frac{-5\pi}{6}$; $x = \frac{5\pi}{3}$; $x = \frac{5\pi}{2}$; $x = \frac{9\pi}{4}$

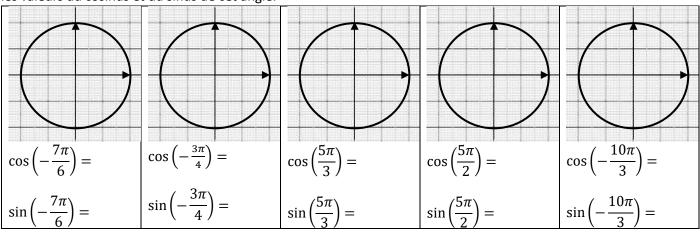
 \Rightarrow Donner pour chaque angle la valeur du $\cos x$ et du $\sin x$ sous forme d'une fraction.



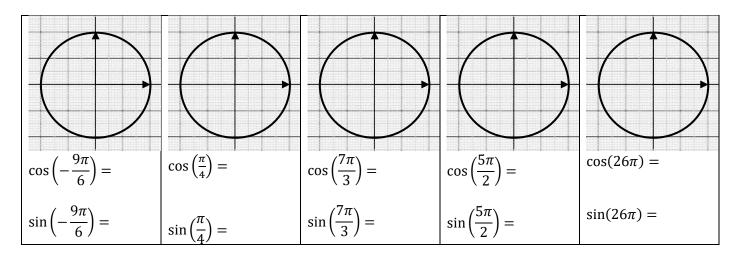
Exercice 4: Pour chacun des angles suivants en radians : $\frac{4\pi}{3}$; $\frac{119\pi}{6}$; 55 ; 2023

- \Rightarrow donner sa mesure principale,
- \Rightarrow écrire cet angle sous la forme : $\alpha + 2k\pi$ avec $-\pi < \alpha \le +\pi$ et $k \in \mathbb{Z}$

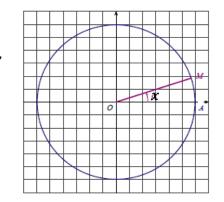
<u>Exercice 5</u> : Compléter le tableau ci-dessous en repérant l'angle défini sur le cercle trigonométrique et en donnant les valeurs du cosinus et du sinus de cet angle.



Exercice 6 : Angles remarquables : Compléter le tableau ci-dessous en repérant l'angle défini sur le cercle trigonométrique et en donnant les valeurs du cosinus et du sinus de cet angle.



Exercice 7: \Rightarrow Sur le cercle trigo ci-contre, le point M est associé à l'angle x. Repérer les points A, B, C associés respectivement aux angles $(\frac{\pi}{2} - x)$, (-x) et $(\frac{\pi}{2} + x)$



⇒ Simplifier l'expression suivante :

$$F = \cos\left(\frac{\pi}{2} - x\right) + \sin(-x) + \cos\left(\frac{\pi}{2} + x\right)$$

Exercice 8: Simplifier l'expression suivante : $G = \cos\left(\frac{3\pi}{2} - x\right) + \cos\left(\frac{5\pi}{2} + x\right) + \sin(x + 2\pi) + \sin(\pi - x)$