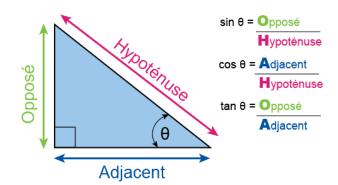
Chapitre 3.

Trigonométrie

1- COSINUS ET DU SINUS D'UN ANGLE DANS UN TRIANGLE RECTANGLE :

Historiquement, les cosinus, sinus et tangente d'un angle ont été définis de la manière suivante :

Comme la longueur de l'hypoténuse est toujours supérieure à celles des côtés opposés ou adjacents, on peut en déduire que $cos(\theta)$ et $sin(\theta)$ sont toujours inférieurs à 1.



 $(\cos(\theta))^2 + (\sin(\theta))^2$ D'autre part, si on calcule :

 $\left(\frac{Adjacent}{Hypoténuse}\right)^2 + \left(\frac{Opposé}{Hypoténuse}\right)^2$ On obtient:

Adjacent² + Opposé² Ce qui donne: Hypoténuse²

D'après le théorème de Pythagore : $Adjacent^2 + Opposé^2 = Hypoténuse^2$

On a donc finalement : $(\cos(\theta))^2 + (\sin(\theta))^2 = \frac{Hypoténuse^2}{Hypoténuse^2} = 1$

Point Cours:

- $cos(\theta)$ et $sin(\theta)$ sont toujours inférieurs à 1
- $\cos(\theta)^2 + \sin(\theta)^2 = 1$

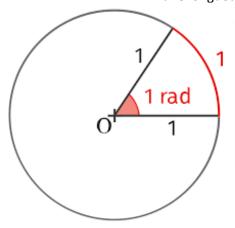
2- UNITES DES ANGLES:

Depuis l'antiquité, l'unité utilisée pour mesurer des angles était le *degré*. Ce n'est qu'à la fin du 19^{ième} siècle

que l'on utilise le radian. Cette nouvelle unité est impérative lorsque l'on dérive ou intègre les fonctions cosinus et sinus. On l'utilise ainsi en sciences physiques.

Un angle de 1 radian est obtenu en enroulant sur un cercle une longueur égale à son

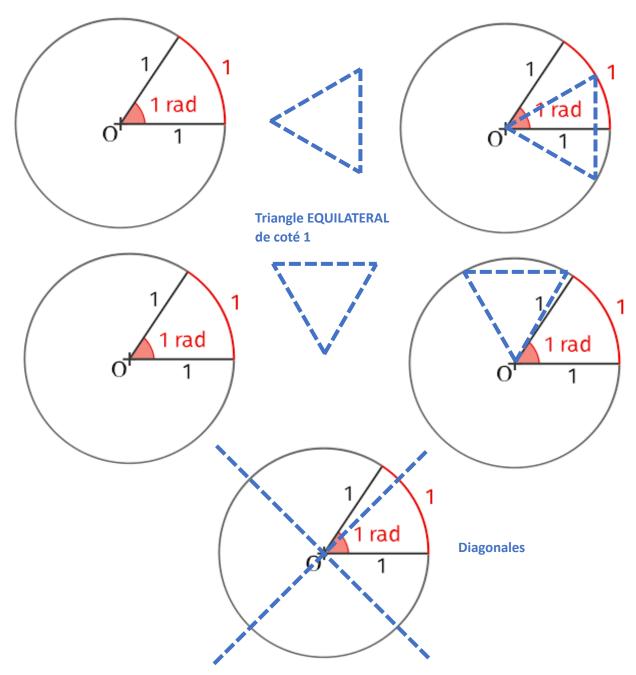
Si on raisonne sur un cercle dont le rayon est égal à 1, on obtient 1 radian en enroulant une longueur de 1 sur le cercle.



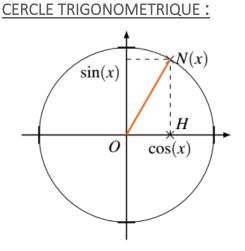
- <u>Point Cours</u>: Un cercle de rayon 1, centré sur l'origine d'un repère est appelé CERCLE TRIGONOMETRIQUE
 - Le périmètre d'un cercle trigonométrique est égal à 2π

3- ANGLES REMARQUABLES:

Les angles en radians ne sont pas nécessairement compris entre 0° et 90°. Un angle θ en radians pourra prendre n'importe quelle valeur réelle : $\theta \in]-\infty$; $+\infty[$. Parmi toutes ces valeurs possibles, certaines sont dites remarquables. Elles correspondent aux équivalents en degrés des angles 0°, 30°, 60° et 90°.



4- COSINUS ET SINUS D'UN ANGLE SUR UN

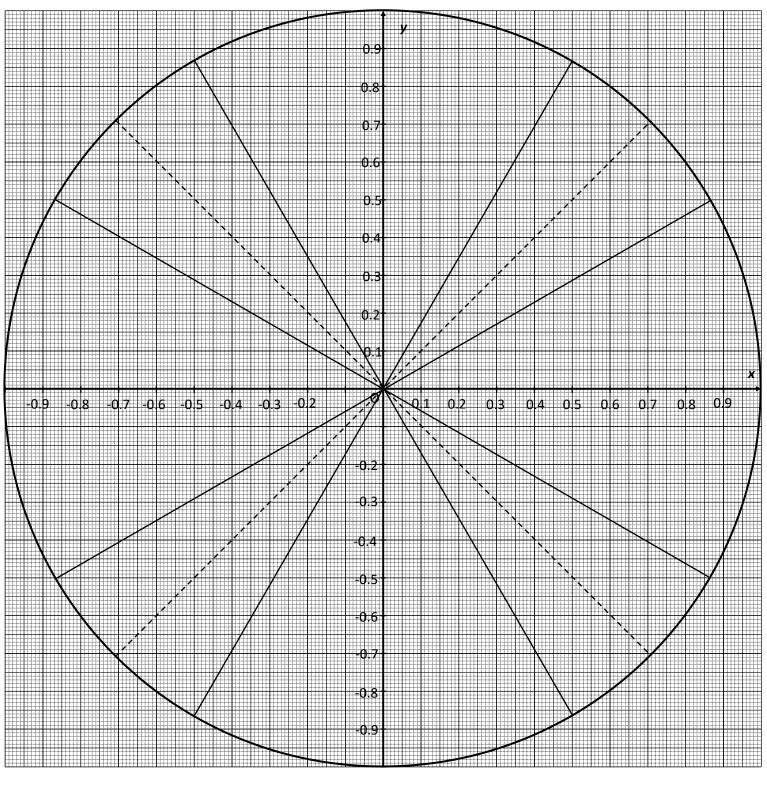


Point Cours:

Soit un point N du cercle trigonométrique repéré par un angle noté x et exprimé en radians :

- cos (x) prend la valeur de l'abscisse de ce point,
- \circ sin (x) prend la valeur de l'ordonnée de ce point.

5- COSINUS ET SINUS DES ANGLES REMARQUABLES :



Angle θ en °	0°		30°		45°		60°		90°		120°		135°		150°		180°	
Angle θ en <i>rad</i>																		
cos (θ)																		
sin (θ)																		

Point Cours: On doit toujours avoir $\cos^2(x) + \sin^2(x) = 1$. Ainsi:

o
$$si cos(x) = 1$$
 alors $sin(x) = 0$ car $1^2 + 0^2 = 1$

o si
$$cos(x) = \frac{1}{2}$$
 alors $sin(x) = \frac{\sqrt{3}}{2} car \left(\frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2 = 1$

o si
$$cos(x) = sin(x)$$
 alors $cos(x) = \frac{\sqrt{2}}{2} car \left(\frac{\sqrt{2}}{2}\right)^2 + \left(\frac{\sqrt{2}}{2}\right)^2 = 1$

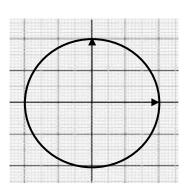
6- MESURE PRINCIPALE D'UN ANGLE :

<u>Point Cours</u>: La mesure principale d'un angle θ est celle qui repère le même point sur le cercle trigonométrique, mais avec une valeur comprise entre $-\pi$ et π .

Exemple: Mesure principale de l'angle $\frac{35 \pi}{2}$

$$\frac{35\,\pi}{2} \ = \ -\frac{\pi}{2} + \frac{36\,\pi}{2} \ = \ -\frac{\pi}{2} + \ 9\,\times 2\pi$$

Ainsi les angles $\frac{35\,\pi}{2}$ et $-\frac{\pi}{2}$ repèrent le même point sur le cercle trigonométrique. La mesure principale de $\frac{35\,\pi}{2}$ est donc $-\frac{\pi}{2}$.



7- EGALITES A CONNAITRE :

