Chapitre 6- Nombres complexes: forme exponentielle

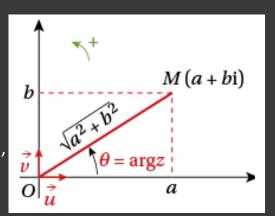
1- MODULE ET ARGUMENT D'UN NOMBRE COMPLEXE :

<u>Point Cours</u>: Soit un nombre complexe z dont la forme algébrique est ${f z}={m a}+{m b}~{m i}$ Son point image est ici noté M .

O Le MODULE de z, noté |z|, est égal à la distance OM. On a :

$$|z| = OM = \sqrt{a^2 + b^2}$$

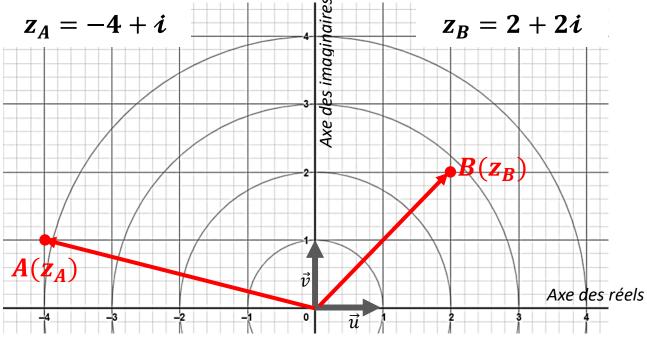
o L'ARGUMENT de z , noté $\arg{(z)}$, est égal à l'angle $\theta = (\overrightarrow{u}, \overrightarrow{OM})$



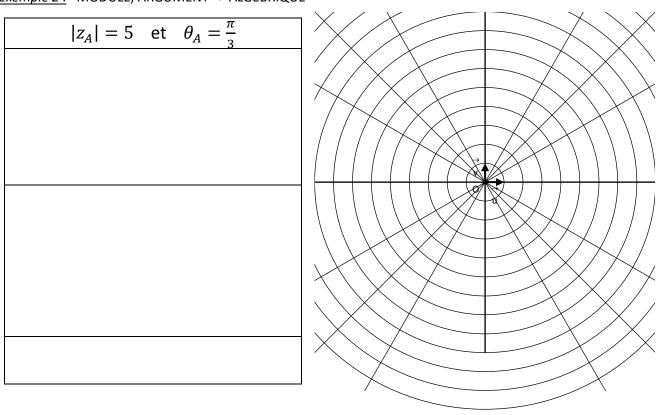
On a les relations suivantes :

•
$$cos(\theta) = \frac{a}{|z|}$$
 ou $a = |z| cos(\theta)$

•
$$\sin(\theta) = \frac{b}{|z|}$$
 ou $b = |z|\sin(\theta)$



$z_A = -4 + i$	$z_B = 2 + 2i$
<u>Module</u> :	<u>Module</u> :
<u>Argument</u> :	<u>Argument</u> :
Syample 2 - MODILLE ADCLIMENT ALCERDIQUE	

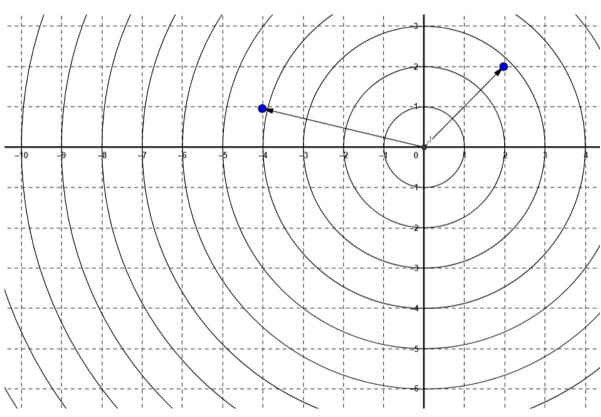


$ z_B = 8$ et	$\theta_B = -\frac{5\pi}{6}$

2- PROPRIETE SUR LA MULTIPLICATION ET LA DIVISION :

a. Exemple:
$$z_A = -4 + i$$
 , $z_B = 2 + 2i$

Soit le nombre complexe $z_{\it C}$ défini par : $z_{\it C}=z_{\it A}\times\,z_{\it B}$. On a :



On se propose de calculer le module et l'argument de $z_{\it C}=z_{\it A} imes z_{\it B}=-10-6~i$

$$z_C = -10 - 6 i$$

Module:

<u>Argument</u>:

On remarque graphiquement et cela est confirmé par les calculs, que :

$ z_C = z_A \times z_B $	
$\theta_C = \theta_A + \theta_B$	

b. PROPRIETE SUR LA MULTIPLICATION:

<u>Point Cours</u>: Soit deux nombres complexes z_A et z_B . Soit le nombre complexe

$$z_C = z_A \times z_B$$

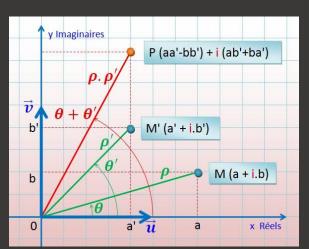
En multipliant deux nombres complexes :

o Les modules se multiplient :

$$|z_C| = |z_A| \times |z_B|$$

o Les arguments s'ajoutent :

$$\theta_C = \theta_A + \theta_B$$



c. PROPRIETE SUR LA DIVISION:

 $\underline{Point\ Cours}$: Soit deux nombres complexes z_A et z_B . Soit le nombre complexe

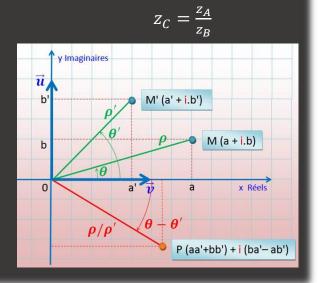
En divisant deux nombres complexes :

o Les modules se divisent :

$$|z_C| = \frac{|z_A|}{|z_B|}$$

 \circ Les arguments se retranchent :

$$\theta_C = \theta_A - \theta_B$$



d. EXEMPLE D'APPLICATION DE CES PROPRIETES :

Soit les nombres complexes z_A et z_B définis sous forme algébrique par :

$$z_A = 2 i$$
 et $z_B = 1 - i$

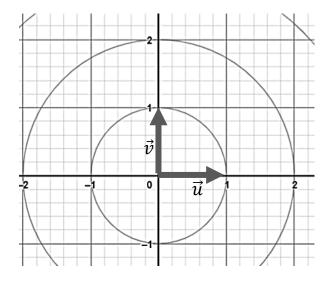
On constate graphiquement que :

$$|z_A| =$$

$$\theta_A =$$

$$|z_B| =$$

$$\theta_B =$$



En utilisant les propriétés précédentes, on peut conclure que les nombres complexes $z_A \times z_B$ et $\frac{z_A}{z_B}$ ont les caractéristiques suivantes :

$z_A \times z_B$	$rac{Z_A}{Z_B}$
<u>Module</u> :	<u>Module</u> :
<u>Argument</u> :	<u>Argument</u> :

3- FORME EXPONENTIELLE:

<u>Point Cours</u>: Un nombre complexe z est défini sous forme algébrique par :

$$z = a + b i$$

Connaissant le module et l'argument d'un nombre complexe, on peut facilement retrouver la forme algébrique :

$$z = |z|\cos(\theta) + |z|\sin(\theta) i$$

Une notation dite EXPONENTIELLE a été créée afin de faciliter les opérations sur les nombres complexes :

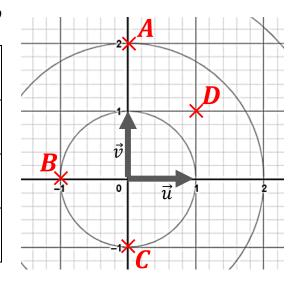
$$z = |z| e^{i \theta}$$

Finalement, un nombre complexe z peut s'écrire sous 3 formes différentes :

$$z = a + b i = |z| \cos(\theta) + |z| \sin(\theta) i = |z| e^{i\theta}$$

Exemples: module et argument des affixes, des points A, B, C et D

A	z =	$\theta =$
В	z =	$\theta =$
С	z =	$\theta =$
D	z =	$\theta =$



 \Rightarrow 3 écritures pour les affixes des points A, B, C et D

A	
В	
С	
D	

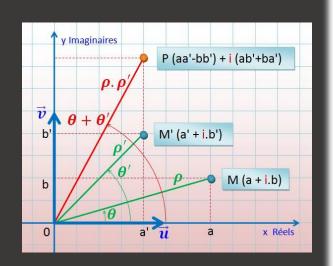
4- PROPRIETES SUR LA MULTIPLICATION, EN FORME EXPONENTIELLE :

<u>Point Cours</u>: Soit deux nombres complexes $z_A=|z_A|\ e^{i\ \theta_A}$ et $z_B=|z_B|\ e^{i\ \theta_B}$. Soit le nombre complexe $z_C=z_A\times z_B$.

On peut écrire :

$$z_C = z_A \times z_B = |z_A| e^{i \theta_A} \times |z_B| e^{i \theta_B}$$
$$= |z_A| |z_B| e^{i \theta_A} \times e^{i \theta_B}$$
$$= |z_A| |z_B| e^{i (\theta_A + \theta_B)}$$

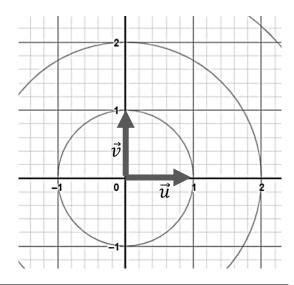
Avec la propriété naturelle des exposants, le résultat donne bien un nombre dont le module est égal au produit des modules et l'argument est égal à la somme des arguments.



Exercice d'application :

Soit les nombres complexes z_A et z_B définis sous forme algébrique par : $z_A=2\ i$ et $z_B=1-i$

1- Déterminer l'écriture exponentielle de z_A et z_B :



2- Calculer le produit $z_A \times z_B$ sous forme algébrique et sous forme exponentielle :

Calcul sous forme algébrique	Calcul sous forme exponentielle

5- PROPRIETES SUR LA DIVISION, EN FORME EXPONENTIELLE :

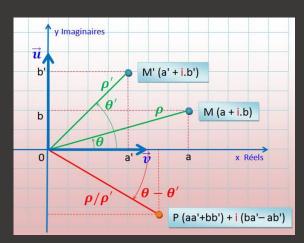
<u>Point Cours</u>: Soit deux nombres complexes $z_A = |z_A| e^{i \theta_A}$ et $z_B = |z_B| e^{i \theta_B}$. Soit le nombre complexe $z_C = \frac{z_A}{z_B}$

On peut écrire :

$$z_C = \frac{z_A}{z_B} = \frac{|z_A| e^{i\theta_A}}{|z_B| e^{i\theta_B}}$$

$$= \frac{|z_A|}{|z_B|} \times \frac{e^{i\theta_A}}{e^{i\theta_B}}$$

$$= \frac{|z_A|}{|z_B|} e^{i(\theta_A - \theta_B)}$$



Le résultat donne bien un nombre qui a un module égal au quotient des modules et un argument égal à la différence des arguments.

Remarque: INVERSE d'un nombre complexe

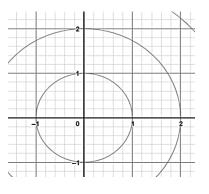
$$\frac{1}{z_B} = \frac{1}{|z_B| e^{i \theta_B}} = \frac{1}{|z_B|} e^{i (-\theta_B)}$$

Exercice d'application :

Soit les nombres complexes z_A et z_B définis sous forme algébrique par :

$$z_A = 2 i$$
 et $z_B = 1 - i$

1- Déterminer l'écriture exponentielle de z_A et z_B :



2- Calculer le quotient $\frac{z_A}{z_B}$ sous forme algébrique et sous forme exponentielle :

6- EXERCICES:

EXERCICE 1.:

- 1- Déterminer la forme exponentielle de z = 2 + 3i
- 2- Déterminer la forme exponentielle de z = 1 2i
- 3- Déterminer la forme exponentielle de z = 2 + i

EXERCICE 2.: Soient les nombres complexes $z_A=2$ i et $z_B=4+4$ i et $z_C=\frac{z_A}{z_B}$

- 1- Tracer les vecteurs images de z_A et z_B dans le plan complexe.
- 2- Ecrire z_A et z_B sous forme exponentielle en effectuant le minimum de calculs.
- 3- Déterminer la forme exponentielle de z_C en effectuant la division sous forme exponentielle.
- 4- Tracer le vecteur image de z_C dans le plan complexe.
- 5- Calculer $z_C=\frac{2i}{4+4i}$ en effectuant la division sous forme algébrique. Le vecteur image de z_C tracé auparavant correspond-t-il à ce résultat ?

EXERCICE 3.: Soient les nombres complexes $z_A=1$ et $z_B=0.5$ i et $z_C=\frac{z_A}{z_B}$

- 1- Tracer les vecteurs images de z_A et z_B dans le plan complexe.
- 2- Ecrire z_A et z_B sous forme exponentielle en effectuant le minimum de calculs.
- 3- Déterminer la forme exponentielle de $z_{\mathcal{C}}$ en effectuant la division sous forme exponentielle.
- 4- Tracer le vecteur image de z_C dans le plan complexe.
- 5- Calculer $z_C=\frac{1}{0.5\,i}$ en effectuant la division sous forme algébrique. Le vecteur image de z_C tracé auparavant correspond-t-il à ce résultat ?

EXERCICE 4.: Soient les nombres complexes $z_A=1$ et $z_B=2+i$ et $z_C=\frac{z_A}{z_B}$

- 1- Tracer les vecteurs images de z_A et z_B dans le plan complexe.
- 2- Ecrire z_A et z_B sous forme exponentielle
- 3- Déterminer la forme exponentielle de z_C en effectuant la division sous forme exponentielle.
- 4- Tracer le vecteur image de $z_{\mathcal{C}}$ dans le plan complexe.
- 5- Calculer $z_C=\frac{1}{2+i}$ en effectuant la division sous forme algébrique. Le vecteur image de z_C tracé auparavant correspond-t-il à ce résultat ?

9

EXERCICE 5.: Soient les nombres complexes $z_A = 2 + 3i$ et $z_B = 1 - 2i$ et $z_C = \frac{z_A}{z_B}$

- 1- Tracer les vecteurs images de z_A et z_B dans le plan complexe.
- 2- Ecrire z_A et z_B sous forme exponentielle

- 3- Déterminer la forme exponentielle de z_C en effectuant la division sous forme exponentielle.
- 4- Tracer le vecteur image de z_C dans le plan complexe.
- 5- Calculer $z_C=\frac{2+3\ i}{1-2\ i}$ en effectuant la division sous forme algébrique. Le vecteur image de z_C tracé auparavant correspond-t-il à ce résultat ?

EXERCICE 6.:

- 1- Soit $z_{\rm A}=2~e^{i\frac{-\pi}{6}}$. Donner la forme algébrique de ce nombre et le tracer dans le plan complexe.
- 2- Soit $z_B=3\,e^{i\,\frac{-\pi}{2}}$. Donner la forme algébrique de ce nombre et le tracer dans le plan complexe.
- 3- Soit $z_C=\sqrt{2}\,e^{i^{\frac{-3\pi}{4}}}$. Donner la forme algébrique de ce nombre et le tracer dans le plan complexe.
- 4- Soit $z_D=3\,e^{1,2\,i}$. Donner la forme algébrique de ce nombre et le tracer dans le plan complexe.
- 5- Soit $z_E = 4 \, e^{-1 \, i}$. Donner la forme algébrique de ce nombre et le tracer dans le plan complexe.
- 6- Soit $z_E=2\,e^{2024\,i}$. Donner la forme algébrique de ce nombre et le tracer dans le plan complexe.

EXERCICE 7.: Soit les nombres complexes : $z_A = -2 - 2i$ et $z_B = 3i$

- 1- Tracer les vecteurs images de z_A et z_B dans un repère.
- 2- Calculer sous forme algébrique $z_C = z_A \times z_B$ et $z_D = \frac{z_A}{z_B}$
- 3- Donner l'écriture exponentielle de z_4
- 4- Donner l'écriture exponentielle de z_B
- 5- Calculer sous forme exponentielle $z_C = z_A \times z_B$ et $z_D = \frac{z_A}{z_B}$