NOMBRES COMPLEXES

EXERCICE 1.: Soient les nombres complexes $z_A = 2i$ et $z_B = 4 + 4i$ et $z_C = \frac{z_A}{z_B}$

- 1- Tracer les vecteurs images de z_A et z_B dans le plan complexe.
- 2- Ecrire z_A et z_B sous forme exponentielle en effectuant le minimum de calculs.
- 3- Déterminer la forme exponentielle de $z_{\mathcal{C}}$ en effectuant la division sous forme exponentielle.
- 4- Tracer le vecteur image de z_C dans le plan complexe.
- 5- Calculer $z_C=\frac{2i}{4+4i}$ en effectuant la division sous forme algébrique. Le vecteur image de z_C tracé auparavant correspond-t-il à ce résultat ?

EXERCICE 2.: Soient les nombres complexes $z_A = 1$ et $z_B = 0.5 i$ et $z_C = \frac{z_A}{z_B}$

- 1- Tracer les vecteurs images de z_A et z_B dans le plan complexe.
- 2- Ecrire z_A et z_B sous forme exponentielle en effectuant le minimum de calculs.
- 3- Déterminer la forme exponentielle de $z_{\mathcal{C}}$ en effectuant la division sous forme exponentielle.
- 4- Tracer le vecteur image de z_C dans le plan complexe.
- 5- Calculer $z_C=\frac{1}{0.5\,i}$ en effectuant la division sous forme algébrique. Le vecteur image de z_C tracé auparavant correspond-t-il à ce résultat ?

EXERCICE 3. :

- 1- Déterminer la forme exponentielle de z = 2 + 3i
- 2- Déterminer la forme exponentielle de z = 1 2i
- 3- Déterminer la forme exponentielle de z = 2 + i

EXERCICE 4.: Soient les nombres complexes $z_A = 1$ et $z_B = 2 + i$ et $z_C = \frac{z_A}{z_B}$

- 1- Tracer les vecteurs images de z_A et z_B dans le plan complexe.
- 2- Ecrire z_A et z_B sous forme exponentielle
- 3- Déterminer la forme exponentielle de $z_{\mathcal{C}}$ en effectuant la division sous forme exponentielle.
- 4- Tracer le vecteur image de z_C dans le plan complexe.
- 5- Calculer $z_C=\frac{1}{2+i}$ en effectuant la division sous forme algébrique. Le vecteur image de z_C tracé auparavant correspond-t-il à ce résultat ?

EXERCICE 5.: Soient les nombres complexes $z_A = 2 + 3i$ et $z_B = 1 - 2i$ et $z_C = \frac{z_A}{z_B}$

- 1- Tracer les vecteurs images de z_A et z_B dans le plan complexe.
- 2- Ecrire z_A et z_B sous forme exponentielle
- 3- Déterminer la forme exponentielle de $z_{\mathcal{C}}$ en effectuant la division sous forme exponentielle.
- 4- Tracer le vecteur image de z_C dans le plan complexe.

5- Calculer $z_C=\frac{2+3\ i}{1-2\ i}$ en effectuant la division sous forme algébrique. Le vecteur image de z_C tracé auparavant correspond-t-il à ce résultat ?

EXERCICE 6.:

- 1- Soit $z_A=2\,e^{i\frac{-\pi}{6}}$. Donner la forme algébrique de ce nombre et le tracer dans le plan complexe.
- 2- Soit $z_B=3~e^{i\frac{-\pi}{2}}$. Donner la forme algébrique de ce nombre et le tracer dans le plan complexe.
- 3- Soit $z_{\it C}=\sqrt{2}\,e^{i\frac{-3\pi}{4}}$. Donner la forme algébrique de ce nombre et le tracer dans le plan complexe.
- 4- Soit $z_D=3\ e^{1,2\ i}$. Donner la forme algébrique de ce nombre et le tracer dans le plan complexe.
- 5- Soit $z_E=4\ e^{-1\ i}$. Donner la forme algébrique de ce nombre et le tracer dans le plan complexe.
- 6- Soit $z_E=2\,e^{2024\,i}$. Donner la forme algébrique de ce nombre et le tracer dans le plan complexe.

EXERCICE 7.: Soit les nombres complexes : $z_A = -2 - 2i$ et $z_B = 3i$

- 1- Tracer les vecteurs images de z_A et z_B dans un repère.
- 2- Calculer sous forme algébrique $z_C=z_A\times z_B$ et $z_D=\frac{z_A}{z_B}$
- 3- Donner l'écriture exponentielle de z_A
- 4- Donner l'écriture exponentielle de z_B
- 5- Calculer sous forme exponentielle $z_C = z_A \times z_B$ et $z_D = \frac{z_A}{z_B}$

EXERCICE 8. : Réaliser chacune des opérations suivantes sous forme algébrique et sous forme exponentielle.

$\frac{3i}{1-i}$	$(\sqrt{3}+i)(1+\sqrt{3}i)$	$\frac{1-i}{2i}$
$\frac{\sqrt{3}+i}{1+\sqrt{3}i}$	3i(1-i)	$\frac{2+i}{4+2i}$

EXERCICE 9.: Equations

- 1- Déterminer la forme exponentielle du nombre complexe z qui vérifie la relation : 5iz + 5z = 10
- 2- Même question avec la relation 2 i z + 4 z = 5 i