TD BTS SN RESOLUTION NUMERIQUE D'UNE EQUATION DIFFERENTIELLE

Exercice 1: Injection médicament

A l'instant t=0, on injecte à un malade une substance médicamenteuse qui est ensuite progressivement éliminée. On désigne par y(t) la concentration de la substance en mg/L dans le sang, présente à l'instant t, exprimé en heures. On suppose qu'à chaque instant t, la vitesse d'élimination y'(t) est proportionnelle à la concentration restante dans le sang du malade. Cette hypothèse se traduit mathématiquement par l'équation différentielle (E) : $2\ y' + 0.4y = 0$. A l'instant t=0, $y(0)=80\ mg/L$

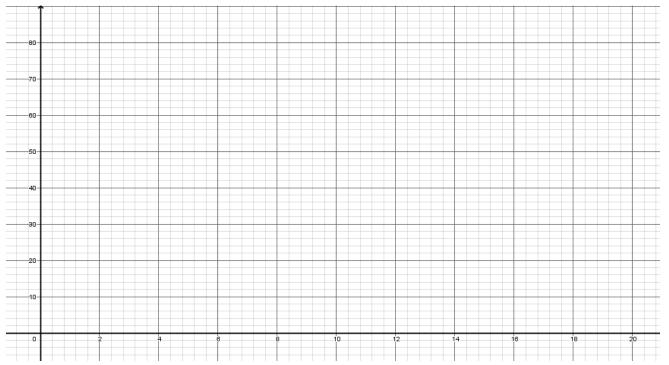
PARTIE A : Résolution numérique de l'équation différentielle

Le fonction y(t) est échantillonnée avec une période d'échantillonnage $T_e=1\ h$ pour constituer une suite y_n . On a ainsi : $y_0=80$; $y_1=$ concentration après 1h ,, $y_n=$ concentration après n heures

- 1- Déterminer la relation de récurrence donnant y_n en fonction de y_{n-1}
- 2- Calculer les 11 premières valeurs de la suite y_n e compléter le tableau ci-dessous :

n	-1	0	1	2	3	4	5	6	7	8	9	10
$t = n T_e$ en heures												
y_n	0	80										

3- Tracer ci-dessous la courbe représentative du signal y(t)



PARTIE B: Résolution mathématique de l'équation différentielle

- 1- Déterminer la fonction y(t) solution de l'équation 2y' + 0.4y = 0 avec comme CI : $y(0) = 80 \, mg/L$
- 2- Tracer sur le repère ci-dessous, la courbe représentative de la fonction f pour 0 < t < 20

Exercice 2: Refroidissement d'une pièce d'habitation

On éteint le chauffage dans une pièce d'habitation au temps t=0. La température y est alors de 20°C. La température extérieure est constante et égale à 11°C. On définit la fonction y définie sur \mathbb{R}^+ par : y(t) la température de cette pièce en °C, au temps t>0 exprimé en heures. Les principes de la physique permettent d'établir que la fonction y est solution de l'équation différentielle : 2y'+0.24y=2.64 avec comme condition initiale : y(0)=20

PARTIE A : Résolution numérique de l'équation différentielle

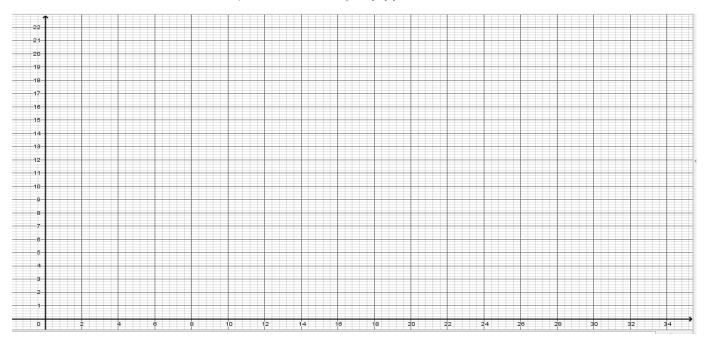
Le fonction y(t) est échantillonnée avec une période d'échantillonnage $T_e=2~h$ pour constituer une suite y_n . On a ainsi : $y_0=20$; $y_1=$ température après 2h ,, $y_n=$ température après $n\times 2$ heures

1- Déterminer la relation de récurrence donnant y_n en fonction de y_{n-1}

2- Calculer les 11 premières valeurs de la suite y_n e compléter le tableau ci-dessous :

n	-1	0	1	2	3	4	5	6	7	8	9	10
$t = n T_e$ en heures												
y_n	0	20										

3- Tracer ci-dessous la courbe représentative du signal y(t)



PARTIE B : Résolution mathématique de l'équation différentielle

- 4- Déterminer la fonction y(t) solution de l'équation 2y' + 0.24y = 2.64 avec comme CI : y(0) = 20
- 5- Tracer sur le repère ci-dessus, la courbe représentative de la fonction f pour 0 < t < 34