DECOUVERTE DES LOIS DE DENSITE

On se propose à travers 3 situations différentes, de déterminer des probabilités par SIMULATION avec un tableur (*Excel*). L'objectif de ce travail est d'introduire le chapitre sur les **Lois de Densité**.

1-SITUATION 1:

On tire au hasard un nombre réel X dans l'intervalle [0 ; 1]. Quelle est la probabilité p(0<X<0,2) que X soit compris entre 0 et 0,2 ? Quelle est la probabilité p(0.2<X<0,21) que X soit compris entre 0,2 et 0,21 ?

Partie A : Trouver la probabilité p(0<X<0,2)

⇒ Lancer Excel. Sauvegarder dans *Mes Documents* le fichier sous le nom : *situation1*

⇒ Générer un nombre aléatoire compris entre 0 et 1 : dans la cellule A1, taper :

=ALEA()

En tapant sur la touche F9, un nouveau nombre aléatoire est généré.

⇒ Dupliquer la cellule A1, jusqu'à la ligne A100 afin de générer 100 nombres aléatoires compris entre 0 et 1. En tapant sur la touche F9, 100 nouveaux nombres sont générés.

⇒ Parmi ces 100 nombres, on va compter ceux qui sont compris entre 0 et
 0,2. Pour cela, dans la cellule C1, écrire le commentaire 0< X < 0,2, et dans
 la cellule C2, taper : =NB.SI(A1:A100;"<=0,2")

⇒ Noter dans le tableau ci-dessous, le résultat de ce comptage pour 5 simulations différentes (touche F9) :

Simulation 1	Simulation 2	Simulation 3	Simulation 4	Simulation 5	-
					-

⇒ Si le comptage était fait sur un nombre bien supérieur à 100, quelle serait d'après-vous le pourcentage de nombre compris entre 0 et 0.2 ?

➡ Modifier le fichier pour réaliser à présent le comptage sur une simulation de 500 nombres et en calculer le pourcentage de ceux compris entre 0 et 0,2. Noter dans le tableau ci-dessous, le résultat de ce comptage pour 5 simulations différentes :

Simulation 1	Simulation 2	Simulation 3	Simulation 4	Simulation 5	

 \Rightarrow Conclure en donnant la réponse à la question suivante : « On tire au hasard un nombre réel X dans l'intervalle [0 ; 1]. Quelle est la probabilité p(0<X<0,2) que X soit compris entre 0 et 0,2 ? » :

_				
	Α	В	С	
	0,72339977		0 <x<0,2< th=""><th></th></x<0,2<>	
	0,4283788	Nombre :	89	
	0,41229903	Pourcentage	=C2/5	
I	0,99744734			ľ
I	0,47704419			
	0.3979959			

Astuces:

Sur une colonne très haute :

- Ctrl
 permet d'aller

 directement au début
 de la colonne, sans
 utiliser l'ascenseur
- Ctrl ⊅ permet d'aller directement à la fin de la colonne.

	Α	В	С	D
1	0,65670937		0 <x<0,2< th=""><th></th></x<0,2<>	
2	0,53313492		=NB.SI(A1:A1	L00;"<0,2)
3	0,04781172		NB.SI(plage;	critère)
4	0,46050236			
5	0,36574826			
6	0,50239211			
7	0,43652915			
8	0,29407706			
-	0.47000000			

Partie B : Trouver la probabilité p(0,2<X<0,21)
⇒ Rajouter au fichier précédent une colonne
0,20< X < 0,21 avec la fonction :

=NB.SI(A1:A500;"<=0,21")-NB.SI(A1:A500;"<=0,20")

	1	Α	В	С	D	E	F	G
	1	0,70697544		0 <x<0,2< th=""><th>0,20< X < 0,2</th><th>21</th><th></th><th></th></x<0,2<>	0,20< X < 0,2	21		
	2	0,86880451	Nombre :	89	=NB.SI(A1:A	500;"<0,21")-I	NB.SI(A1:A500);"<0,20")
	3	0,8442364	Pourcentage	17,8	NB.SI(plage;	critère)		
)	4	0,62733703						
)	5	0,87255443						
	6	0,03821376						
	7	0,40331401						
	8	0.609585						

⇒Noter dans le tableau ci-dessous, le résultat de ce comptage pour 5 simulations différentes :

Simulation 1	Simulation 2	Simulation 3	Simulation 4	Simulation 5		

 \Rightarrow Conclure en donnant la réponse à la question suivante : « On tire au hasard un nombre réel X dans l'intervalle [0 ; 1]. Quelle est la probabilité p(0,20<X<0,21) que X soit compris entre 0,20 et 0,21 ? » :

⇒ Sauvegarder et fermer le fichier *situation1*

2 – SITUATION 2 :

Théo arrive à l'arrêt du tramway sans avoir consulté les horaires. Cet arrêt se situe en début de ligne. A ce moment de la journée, un tramway part toutes les 5 minutes. On note X la variable aléatoire donnant en minutes, le temps d'attente de Théo jusqu'au départ du tramway. Quelle probabilité p(2<X<2,5) a Théo d'avoir un temps d'attente compris entre 2 mn et 2,5 mn ?

⇒ Ouvrir le fichier *situation1* précédent et le sauvegarder sous le nom : *situation2*

 ⇒ Modifier la 1^{ère} colonne pour générer à présent un nombre aléatoire compris entre 0 et 5 : dans la cellule A1, taper : =5*ALEA() et dupliquer jusqu'à A500.

➡ Effacer la colonne D et modifier la colonne C pour déterminer le pourcentage de nombre compris entre 2 et 2,5

	А	В	С	D	E	F
1	1,50955951		2 <x<2,5< th=""><th></th><th></th><th></th></x<2,5<>			
2	4,18121729	Nombre :	=NB.SI(A1:A5	500;"<2,5")-N	B.SI(A1:A500;	"<2,0")
3	2,5722236	Pourcentage	NB.SI(plage;	critère)		
4	4,16241248					
5	1,52764286					
6	4,10948319					
7	2,80473192					
8	1,98020532					

⇒Noter dans le tableau ci-dessous, le résultat de ce comptage pour 5 simulations différentes :

Simulation 1	Simulation 2	Simulation 3	Simulation 4	Simulation 5

➡ Conclure en donnant la réponse à la question suivante : « Quelle probabilité p(2<X<2,5) a Théo d'avoir un temps d'attente compris entre 2 mn et 2,5 mn ? » :</p>

On se propose d'aller plus loin en déterminant les probabilités suivantes :

p(0<X<1); p(1<X<2); p(2<X<3); p(3<X<4) et p(4<X<5)

⇒ Modifier le fichier :

	Α	В	С	D	E	F	G
1	4,75851384		0 <x<1< th=""><th>1<x<2< th=""><th>2<x<3< th=""><th>3<x<4< th=""><th>4< X <5</th></x<4<></th></x<3<></th></x<2<></th></x<1<>	1 <x<2< th=""><th>2<x<3< th=""><th>3<x<4< th=""><th>4< X <5</th></x<4<></th></x<3<></th></x<2<>	2 <x<3< th=""><th>3<x<4< th=""><th>4< X <5</th></x<4<></th></x<3<>	3 <x<4< th=""><th>4< X <5</th></x<4<>	4< X < 5
2	4,04506045	Nombre :	87	91	109	113	100
3	0,0416468	Pourcentage	17,4	18,2	21,8	22,6	20
4	2,89275483						
5	3,80336671						
6	2,0656747						
7	0,82213837						

⇒ Sélectionner les 5 cellules de Pourcentage et insérer un Histogramme :

⇒ Relancer la simulation plusieurs fois (F9) et observer les fluctuations des différents pourcentages. Conclure en répondant à la question suivante :

« Quelles sont les probabilités d'attendre entre 0 et 1 mn ; entre 1 et 2 mn, ; entre 2 et 3 mn ; entre 3 et 4 mn et entre 4 et 5 mn ? » :

n(0 <x<1)< th=""><th>n(1<x<2)< th=""><th>n(2<x<3)< th=""><th>n(3<x<4)< th=""><th>n(4<x<5)< th=""><th>16</th></x<5)<></th></x<4)<></th></x<3)<></th></x<2)<></th></x<1)<>	n(1 <x<2)< th=""><th>n(2<x<3)< th=""><th>n(3<x<4)< th=""><th>n(4<x<5)< th=""><th>16</th></x<5)<></th></x<4)<></th></x<3)<></th></x<2)<>	n(2 <x<3)< th=""><th>n(3<x<4)< th=""><th>n(4<x<5)< th=""><th>16</th></x<5)<></th></x<4)<></th></x<3)<>	n(3 <x<4)< th=""><th>n(4<x<5)< th=""><th>16</th></x<5)<></th></x<4)<>	n(4 <x<5)< th=""><th>16</th></x<5)<>	16
	P(1 ((12)	p(2 ((3))	p(3 %(1)	p(13(3))	17
					18
					19
					20

⇒ Sauvegarder et fermer le fichier *situation2*

3-SITUATION 3:

Cécile se rend en métro de la station Gorge de Loup jusqu'à la station Cuire : Gorge \rightarrow Bellecour (ligne D) + Bellecour \rightarrow Hotel de Ville (ligne A) + Hotel de Ville \rightarrow Cuire (Ligne C). Elle n'a pas consulté les horaires. A l'arrivée à Gorge de Loup et aux changements à Bellecour et Hotel de ville, elle a un temps d'attente aléatoire uniformément réparti entre 0 et 5 mn. A l'arrivée à Cuire, le temps total de son parcours est égal à T si elle a pris les 3 métros sans aucune attente. Dans le cas où Cécile attend 5 mn au départ et ensuite à chacun des 2 changements, le temps du parcours sera de T + 15 mn. On note X la variable aléatoire donnant en minutes, le temps d'attente cumulé : $0 \le X \le 15$. Quelle probabilité p(2<X<2,5) a Cécile d'avoir un temps d'attente cumulé compris entre 2 mn et 2,5 mn ?

⇒ Ouvrir le fichier *situation2* précédent et le sauvegarder sous le nom : *situation3*

⇒ Copier la 1^{ère} colonne sur les colonnes B et C.

⇒Les cellules A1, B1 et C1 simulent chacun des 3 temps d'attente. Calculer dans la cellule E1 la somme de ces 3 temps d'attente (temps d'attente cumulé) : Taper =**SOMME(A1 :C1)**

⇒Dupliquer la cellule E1 jusqu'à E500 afin d'avoir 500 simulations de temps d'attente cumulés (valeur de X)

	_											
ĺ		Α	В	С	D	E	F	G				
	1	0,61364848	0,2721686	4,70841305	=5	OMME(A1:C	1)					
	2	2,33967186	4,91165801	4,60717606	SOMME(nombre1; [nombre2]; .							
	3	2,85083125	1,37759001	3,9209868								
	4	1,28446946	1,28675049	3,0320534								
	5	4,4302102	1,367833	4,7168241								
	6	0,18649409	0,42339432	1,9236203								
	7	0,21333839	2,53660696	1,29016086								

On se propose de déterminer, un peu comme dans le fichier précédent, les probabilités suivantes : p(0<X<1); p(1<X<2); p(2<X<3); p(3<X<4); p(4<X<5); p(5<X<6); p(6<X<7); p(7<X<8); p(8<X<9); p(9<X<10); p(10<X<11); p(11<X<12); p(12<X<13); p(13<X<14) et p(14<X<15)

⇒ La saisie étant longue sur Excel, le fichier a été avancé. Il suffit de compléter les colonnes de S, T et U :

-																					
1	В	С	D	E	F	G	Ĥ	I	J	K	L	М	N	0	Р	Q	R	S	T	U	Г
	0,4433035	2,1693318		5,7526423		0< X < 1	1< X < 2	2< X < 3	3< X < 4	4< X < 5	5< X < 6	6< X < 7	7< X < 8	8< X < 9	9< X < 10	10< X < 11	11< X < 12	12< X < 13	13< X <14	14< X < 15	
	2,4743626	0,7773287		6,77212	Nombre :	1	5	15	22	37	60	64	79	71	56	43	29	12	6	0	
	0,1525326	1,3167833		3,9097434	Pourcentage	0,2	1	3	4,4	7,4	12	12,8	15,8	14,2	11,2	8,6	5,8	2,4	1,2	0	
	2,5696721	2,18701		9,4438884																	Г
1	3,1540185	0,5112358		4,6594143																	Г
1	0,2454672	3,5869638		8,4825924																	Г
	2,3330426	3,6006615		10,544761																	Γ
1	0,1436631	4,7613027		5,8894987																	Г
1	0,150032	1,7547709		5,4931161																	Г
ī	4,6901093	3,0380483		9,2131127																	Γ
Ţ	4,1351239	4,564931		13,42317																	Г
	2 1/150586	2 757125		5 3300000																	

⇒ Sélectionner les 15 cellules de Pourcentage et insérer un Histogramme :

⇒ Imprimer cet histogramme et joindre l'impression à votre document.

⇒ Relancer la simulation plusieurs fois (F9) et observer les fluctuations des différents pourcentages. Peut-on facilement conclure en répondant à la question suivante :

« Quelle probabilité p(2<X<2,5) a Cécile d'avoir un temps d'attente cumulé compris entre 2 mn et 2,5 mn ? »

⇒ Enregistrer et fermer le fichier

4-SITUATION 2: Bonus

➡ Ouvrir le fichier Situation2, et construire le même histogramme qu'avant avec à présent les probabilités :

p(0<X<0.5); p(0.5<X<1); p(1<X<1.5);; p(4.5<X<5)

