NOMBRES COMPLEXES

EXERCICE 1: Soient les nombres complexes $z_A = 2i$ et $z_B = 4 + 4i$ et $z_C = \frac{z_A}{z_B}$

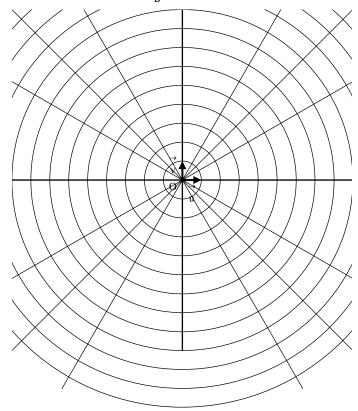
1- Tracer les vecteurs images de z_A et z_B dans le plan complexe ci-contre :

2- Ecrire z_A et z_B sous forme exponentielle en effectuant le minimum de calculs.

3- Déterminer la forme exponentielle de $z_{\mathcal{C}}$ en effectuant la division sous forme exponentielle.

4- Tracer le vecteur image de $z_{\mathcal{C}}$ dans le plan complexe ci-contre

5- Calculer $z_C=\frac{2i}{4+4i}$ en effectuant la division sous forme algébrique. Le vecteur image de z_C tracé auparavant correspond-t-il à ce résultat ?



EXERCICE 2: Soit les nombres complexes : $z_A = 2 e^{i\frac{-\pi}{6}}$; $z_B = 3 e^{i\frac{-\pi}{2}}$ et $z_C = \sqrt{2} e^{i\frac{-3\pi}{4}}$

Donner les formes trigonométrique et algébrique de ces nombres.

EXERCICE 2: Soit les nombres complexes : $z_A = -2 - 2i$ et $z_B = 3i$

1- Tracer les vecteurs images de z_A et z_B dans un repère.

2- Calculer sous forme algébrique $z_C = z_A \times z_B$ et $z_D = \frac{z_A}{z_B}$

3- Déterminer le module et l'argument de z_A (tracer cercle trigo). Donner l'écriture exponentielle de z_A

4- Déterminer sans justifier le module et l'argument de z_B . Donner l'écriture exponentielle de z_B

5- Calculer sous forme exponentielle $z_C = z_A \times z_B$ et $z_D = \frac{z_A}{z_B}$

6- Montrer que : $z_D = \frac{2\sqrt{2}}{3} e^{\frac{3\pi}{4}i}$

EXERCICE 3: On considère les nombres complexes $z = 1 + i\sqrt{3}$ et z' = 1 - i

1) Calculer $z \times z'$ sous forme algébrique et montrer que : $z \times z' = (\sqrt{3} + 1) + i(\sqrt{3} - 1)$

2) Calculer module et argument de z et de z' en donnant les étapes du calcul (avec cercle trigo à main levée) et écrire ces nombres sous forme exponentielle.

3) Calculer $z \times z'$ sous forme exponentielle

4) Déduire des questions précédentes que $\cos\left(\frac{\pi}{12}\right) = \frac{\sqrt{2}+\sqrt{6}}{4}$. En déduire la valeur de $\sin\left(\frac{\pi}{12}\right)$.

EXERCICE 4 : Réaliser chacune des opérations suivantes sous forme algébrique et sous forme exponentielle. Comparer les 2 résultats.

$\frac{3i}{1-i}$	$(\sqrt{3}+i)(1+\sqrt{3}i)$	$\frac{1-i}{2i}$
$\frac{\sqrt{3}+i}{1+\sqrt{3}i}$	3i (1 – i)	$\frac{2+i}{4+2i}$

EXERCICE 5 : Problème

On considère les nombres complexes $z = \sqrt{2} + i\sqrt{2}$ et $z' = -2 - 2\sqrt{3}i$

- 1) Calculer \overline{z}'
- 2) Effectuer la division $\frac{z}{z'} = \frac{(\sqrt{2} + i\sqrt{2})}{(-2 2\sqrt{3}i)}$. Montrer que $\frac{z}{z'} = \frac{(-\sqrt{2} \sqrt{6})}{8} + \frac{(\sqrt{6} \sqrt{2})}{8}i \approx -0.48 + 0.13i$
- 3) Calculer module et argument de z et de z' en donnant les étapes du calcul (avec cercle trigo à main levée)
- 4) Tracer les vecteurs images OM et OM' de z et z', dans un repère (1 unité = 2 carreaux ou cm) en utilisant les résultats de la question précédente (laisser les traits de construction, possibilité d'utiliser 1 compas).
- 5) Donner la forme exponentielle de z et de z'
- 6) Calculer $\frac{z}{z'}$ sous forme exponentielle
- 7) Déduire des questions 3) et 7) que $\cos\left(\frac{11\,\pi}{12}\right) = \frac{-\sqrt{2}-\sqrt{6}}{4}$. En déduire la valeur de $\sin\left(\frac{11\,\pi}{12}\right)$. Vérifier l'exactitude de ces valeurs en comparant avec le résultat de la calculatrice. Retrouve t'on environ ces résultats sur un cercle trigo tracé à main levée ?