Chapitre 10. Colinéarité des vecteurs

1- COLINEARITE DE VECTEURS :

<u>Définition</u>: Deux vecteurs \vec{u} et \vec{v} sont **colinéaires** s'il existe un nombre réel k tel que $\vec{u} = k \vec{v}$

EXEMPLES

•
$$\vec{u}$$
 $\left(\begin{array}{c} -1 \\ \end{array}\right)$ sont colinéaires car $\vec{u} = -\frac{1}{2} \vec{v}$, ou $\vec{v} = -2\vec{u}$.

On dit que –2 est le coefficient de colinéarité de \vec{v} par rapport à \vec{u} .

• $\vec{0}$ est colinéaire à tout vecteur \vec{u} car $\vec{0} = 0 \cdot \vec{u}$.

Propriété: Deux vecteurs \vec{u} et \vec{v} non nuls sont **colinéaires** si et seulement si, ils ont la même direction.

2- APPLICATION: DEMONTRER UN PARALLELISME EN UTILISANT LES COORDONNEES

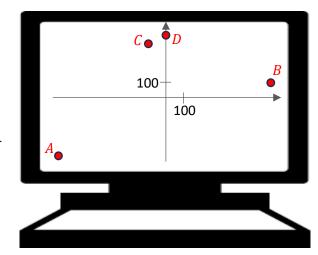
Un écran de 1400 px de large et 800 px de hauteur, est muni d'un repère $(0, \vec{\iota}, \vec{\jmath})$ dont l'origine 0 de trouve en son centre. L'unité graphique est le pixel.

Dans un contexte de jeu vidéo, les points A, B, C et D de coordonnées A(-600; -400), B(600; 104) C(-100; 300) et D(0; 342) sont affichés sur l'écran. Pour que ce jeu vidéo fonctionne correctement, il est nécessaire de savoir si les segments [AB] et [CD] sont parallèles.

Pour répondre à cette question, on calcule les coordonnées des vecteurs \overrightarrow{AB} et \overrightarrow{CD} . On s'intéressera ensuite à la colinéarité de ces vecteurs.

$$\overrightarrow{AB} = \begin{pmatrix} x_B - x_A \\ y_B - y_A \end{pmatrix} =$$

$$\overrightarrow{CD} = \begin{pmatrix} x_D - x_C \\ y_D - y_C \end{pmatrix} =$$



Les vecteurs \overrightarrow{AB} et \overrightarrow{CD} sont-ils colinéaires ? Existe-t-il un nombre k qui permettent de dire que $\overrightarrow{AB} = k \overrightarrow{CD}$? Si ce nombre existe, on doit avoir :

Et ce nombre devrait vérifier ces 2 relations : Ce qui donnerait pour k: Finalement k=12 est solution des 2 équations. On peut donc écrire que $\overrightarrow{AB}=12$ \overrightarrow{CD} . En conclusion, on peut dire que: \circ Les segments [AB] et [CD] sont parallèles. \circ Le segment [AB] est 12 fois plus grand que [CD]. 3- APPLICATION: DEMONTRER UN PARALLELISME SANS COORDONNEES Soit un triangle ACB quelconque, donné cicontre. I est le milieu du coté [AB], J est le milieu de [BC]. Peut-on démontrer vectoriellement que le segment [I J] est toujours parallèle au coté [AC]? Pour répondre à cette question, on s'intéresse à la colinéarité des vecteurs \overrightarrow{AC} et \overrightarrow{IJ} . Contrairement à ce qui a été fait dans le paragraphe précédent, on se propose ici, de ne pas utiliser les coordonnées pour démontrer qu'il existe un nombre k qui permettent de dire que $\overrightarrow{AC} = k \overrightarrow{II}$ \Rightarrow On exploite tout d'abord le fait que I et J sont les milieux respectifs de [AB] et [BC]. Vectoriellement, cela se traduit pas les relations vectorielles : \Rightarrow On écrit une relation de Chasles sur le vecteur \overrightarrow{AC} afin de faire apparaître le vecteur \overrightarrow{II} :

En conclusion, on a pu établir que $\overrightarrow{AC}=2\overrightarrow{IJ}$. Ainsi quel que soit la taille du triangle, on aura toujours :

- Les segments [AC] et [I J] qui seront parallèles.
- \circ Le segment [IJ] sera toujours 2 fois plus petit que [AC].

 $\frac{\text{Propriét\'e}}{\text{parall\`eles si et seulement si les}}$ vecteurs \overrightarrow{AB} et \overrightarrow{CD} sont colinéaires.

4- DETERMINANT DE 2 VECTEURS

Soit 2 vecteurs \vec{u} et \vec{v} de coordonnées $\vec{u} \begin{pmatrix} x \\ y \end{pmatrix}$ et $\vec{v} \begin{pmatrix} x' \\ y' \end{pmatrix}$ dans une base (\vec{t}, \vec{j}) du plan.

Ces 2 vecteurs sont colinéaires, s'il existe un nombre k tel que $\vec{u} = k \vec{v}$.

Ce qui donne avec les coordonnées : $\begin{pmatrix} x \\ y \end{pmatrix} = k \begin{pmatrix} x' \\ y' \end{pmatrix}$.

On doit donc avoir x = k x' et en même temps y = k y'.

Si on suppose que x' et y' sont différents de 0, cela donne $k = \frac{x}{x'}$ et $k = \frac{y}{y'}$.

Les 2 vecteurs \vec{u} et \vec{v} sont ainsi colinéaires si $\frac{x}{x'} = \frac{y}{y'}$

Cette dernière relation s'écrit aussi : x y' = y x' , mais aussi : x y' - y x' = 0

Pour statuer plus simplement sur la colinéarité de 2 vecteurs, on a inventé une nouvelle entité que l'on appelle DETERMINANT. Le déterminant de 2 vecteurs $\vec{u} \begin{pmatrix} x \\ y \end{pmatrix}$ et $\vec{v} \begin{pmatrix} x' \\ y' \end{pmatrix}$ est le nombre x y' - y x'. On obtient ainsi la propriété suivante, **partiellement** démontrée ci-dessus :

<u>Définition</u>: Soit 2 vecteurs $\vec{u} \begin{pmatrix} x \\ y \end{pmatrix}$ et $\vec{v} \begin{pmatrix} x' \\ y' \end{pmatrix}$. Le nombre xy' - yx' est appelé des vecteurs il est noté

<u>Propriété</u>: Deux vecteurs \vec{u} et \vec{v} sont **colinéaires** si et seulement si

5- ALIGNEMENT DE 3 POINTS :

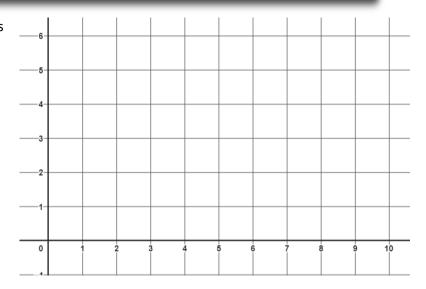
<u>Propriété</u> : 3 points A, B et C sont alignés si et seulement si les vecteurs \overrightarrow{AB} et \overrightarrow{AC} sont colinéaires :

6- EQUATION CARTESIENNE D'UNE DROITE :

 $\underline{\text{D\'efinition}}$: On appelle **vecteur directeur** d'une droite d , tout vecteur \overrightarrow{AB} où A et B sont deux points distincts de d .

Exemple: Soit la droite d passant par les points A(1,2) et B(7,4). Soit un point M(x,y) du plan. Quelle relation doit-il exister entre x et y pour que le point M appartienne à d?

 \Rightarrow Condition pour que le point M appartienne à d:



 \Rightarrow Coordonnées des vecteurs \overrightarrow{AB} et \overrightarrow{AM} :

⇒ Calcul du déterminant :

 $det(\overrightarrow{AB}, \overrightarrow{AM}) =$

- \Rightarrow Condition pour que les vecteurs \overrightarrow{AB} et \overrightarrow{AM} soient COLINEAIRES :
- \Rightarrow CONCLUSION : le point M appartient à d si les coordonnées x , y vérifient la relation suivante :

ш	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	ı
ш																																			ı
ш																																		- 1	ı
П																																		- 1	ı
1																																			ı

- ⇒ Peut-on simplifier cette équation ? :
- \Rightarrow APPLICATION : Les points suivants appartiennent-ils à la droite d d'équation -x+3y-5=0 ?

Le point $\mathcal{C}(-0.5; 1.5)$ appartient-il à d ?	Le point $D(4,6;3,1)$ appartient-il à d ?
-x + 3y - 5	-x + 3y - 5
=	=

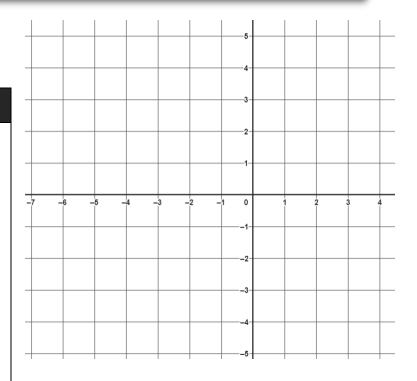
Le point $E(4;4)$ appartient-il à d ?	Le point $F(16;7)$ appartient-il à d ?
-x+3y-5	-x + 3y - 5
=	=

<u>Propriété</u> : Si une droite d a une équation cartésienne ax+by+c=0 avec $(a,b)\neq (0,0)$ alors le vecteur $\vec{u}{b\choose a}$ est un vecteur directeur de d .

Exercice: Tracer dans un repère du plan, la droite d'équation 3x + 2y + 6 = 0.

<u>Technique 1</u>: On définit 2 points particuliers

On cherche par exemple les coordonnées d'un point de la droite qui a comme abscisse x=0



On cherche en plus, par exemple les coordonnées d'un point de la droite qui a comme ordonnée y=0:

-	directeur	mit I seui po	init particullei	et un