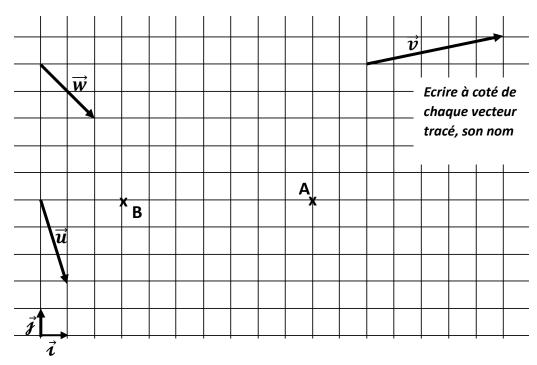
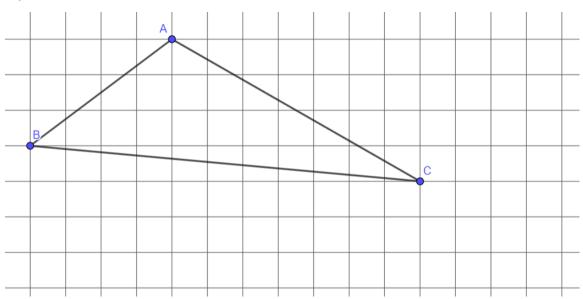
Exercice 1. Vecteur et somme. Les tracés demandés ci-dessous sont à faire sur cette feuille :

Soient les points A, B et les vecteurs \vec{u} , \vec{v} , \vec{w} ci-contre :

- 1- Construire le vecteur d'origine A et égal à $\vec{u} + \vec{v}$
- 2- Construire le vecteur d'origine B et égal à $-\vec{w} + 2 \ \vec{v}$



Exercice 2.: 1- Tracer sur la figure ci-dessous le représentant du vecteur $\vec{u} = \overrightarrow{AC} - \overrightarrow{AB}$ et d'origine A. **Ecrire à coté** de chaque vecteur tracé, son nom.



3- Utiliser la relation de Chasles pour calculer la somme $\overrightarrow{CA} + \overrightarrow{BC} + \overrightarrow{AB}$ (répondre ci-dessous)

Exercice 3.: Dans une base orthonormée $(\vec{\iota}, \vec{\jmath})$, soit les vecteurs $\vec{u} \begin{pmatrix} 2 \\ -1 \end{pmatrix}$ et $\vec{v} \begin{pmatrix} -5 \\ -1 \end{pmatrix}$. Soit le vecteur $\vec{w} = 2 \vec{u} + \vec{v}$.

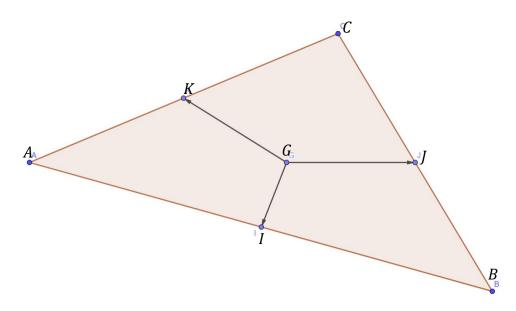
- 1- Donner la définition d'une base orthonormée (\vec{i}, \vec{j}) .
- 2- Ecrire les vecteurs \vec{u} et \vec{v} en fonction de $\vec{\iota}$ et $\vec{\jmath}$
- 3- Ecrire le vecteur \vec{w} en fonction de $\vec{\imath}$ et $\vec{\jmath}$ en écrivant le calcul $\vec{w}=2$ $\vec{u}+\vec{v}$ avec $\vec{\imath}$ et $\vec{\jmath}$
- 4- En déduire les coordonnées de \vec{w} .
- 5- Vérifier le résultat précédent, en construisant **graphiquement sur votre feuille de copie**, le vecteur $2\vec{u} + \vec{v}$ à partir des vecteurs $2\vec{u}$ et \vec{v} . Pour la norme des vecteurs $\vec{\iota}$, $\vec{\jmath}$, prendre 1 grand carreau ou 2 petit carreau (1cm).

Exercice 4. : Soit les points A, B, C de coordonnées A(3; -4), B(1; 1) et C(5; -1). Soit le point D de coordonnées inconnues D(x, y).

- 1- Tracer les points A, B et C sur feuille de copie, dans un repère $(0, \vec{i}, \vec{j})$: pour la norme des vecteurs \vec{i}, \vec{j} , prendre 1 grand carreau ou 2 petit carreau (1cm).
- 2- Calculer les coordonnées du vecteur \overrightarrow{AC}
- 3- Calculer en fonction de x et y les coordonnées du vecteur \overrightarrow{BD}
- 4- Calculer les valeurs de x et y qui permettent d'avoir $\overrightarrow{AC} = \overrightarrow{BD}$
- 5- Tracer le point D. Que peut-on en déduire du quadrilatère ABDC ? Justifier.
- 6- Calculer les coordonnées du point milieu / du segment [BC]. Vérifier le résultat en traçant le point I.
- 7- Sans utiliser de coordonnées, exprimer le vecteur \overrightarrow{AD} en fonction du vecteur \overrightarrow{AI} . Justifier.

Exercice 5.: On donne ci-dessous un triangle ABC quelconque. Les points I, J, K sont respectivement les milieux des cotés [AB], [BC] et [AC].

Soit G le centre de gravité de ce triangle ABC. Ce point vérifie ainsi la relation $\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} = \overrightarrow{0}$



- 1- Montrer que $\overrightarrow{GA} = \overrightarrow{GI} + \frac{1}{2}\overrightarrow{BA}$
- 2- Tracer le triangle *IJK*
- 3- Montrer que G est aussi le centre de gravité du triangle IJK, c'est-à-dire que l'on a $\overrightarrow{GI} + \overrightarrow{GJ} + \overrightarrow{GK} = \overrightarrow{0}$