Exercice 1. : On donne les expressions $A = 4x^2 - 49$ et $B = 25x^2 + 40x + 16$. Pour chacune d'elles :

- o la factoriser,
- o en déduire les valeurs de x qui permettent de l'annuler
- o vérifier qu'en remplaçant dans l'expression d'origine x par la ou les valeurs trouvées, cette expression s'annule bien (étapes du calcul à détailler).

$$A = 4x^2 - 49$$

On reconnait une identité remarquable $a^2 - b^2$:

$$A = (2x)^2 - 7^2$$

$$A = (2x - 7)(2x + 7)$$

L'équation (2x - 7)(2x + 7) = 0 est une équation produit. Donc A = 0 seulement si

$$2x - 7 = 0$$
 ou $2x + 7 = 0$
 $2x = 7$ ou $2x = -7$
 $x = \frac{7}{2}$ ou $x = -\frac{7}{2}$
 $x = 3,5$ ou $x = -3,5$

Donc $4x^2 - 49 = 0$ seulement si $x \in \{-3,5; 3,5\}$

On peut vérifier que ces 2 nombres sont solutions :

(-3,5) est bien solution car

$$4 \times (-3.5)^2 - 49 = 49 - 49 = 0$$

3,5 est bien solution car

$$4 \times 3,5^2 - 49 = 49 - 49 = 0$$

$$B = 25x^2 + 40x + 16$$

On reconnait une identité remarquable $a^2 - 2ab + b^2$:

$$B = (5x)^2 + 40 x + 4^2$$

$$B = (5x + 4)^2$$

L'équation $(5x + 4)^2 = 0$ est une équation produit. Donc B = 0 seulement si

$$5x + 4 = 0$$

$$5x = -4$$

$$x = -\frac{4}{5} = -0.8$$

 $x = -\frac{4}{5} = -0.8$ Donc $25x^2 + 40x + 16 = 0$ seulement si x = -0.8

On peut vérifier que ce nombre est solution :

$$25 \times (-0.8)^{2} + 40 \times (-0.8) + 16$$

$$= 25 \times 0.64 - 32 + 16$$

$$= 16 - 32 + 16$$

$$= 0$$

Exercice 2. :

a) Tracer le tableau de variation de la fonction $x \to x^2$ et celui de la fonction $x \to \sqrt{x}$

x	-∞ -1,9 -1,8 0	+∞
Variations de x^2	$(-1,9)^2$ $(-1,8)^2$	*

x	0	0,011	0,012	+∞
Variations de \sqrt{x}	0	$\sqrt{0,011}$	$\sqrt{0,012}$	*

b) Comparer sans aucun calcul, en justifiant par rapport aux variations des fonctions précédentes,

$$(-1.8)^2$$
 et $(-1.90)^2$

puis

$$\sqrt{0.012}$$
 et $\sqrt{0.011}$

$$-1.8 > -1.9$$

Comme la fonction carré est **décroissante sur**

 $]-\infty$; **0**],on peut dire que :

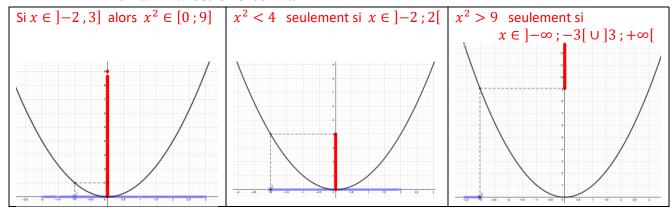
$$(-1.8)^2 < (-1.90)^2$$

0,012 > 0,011

Comme la fonction racine carré est **croissante sur** $[0; +\infty[$, on peut dire que :

$$\sqrt{0.012} > \sqrt{0.011}$$

- c) Continuer les phrases ci-dessous sur votre copie, en justifiant chacune d'elles par un coloriage des axes d'une courbe de la fonction carrée tracée à main levée :
 - Si $x \in]-2,3]$ alors $x^2 \in$
 - o $x^2 < 4$ seulement si $x \in$
 - o $x^2 > 9$ seulement si $x \in$



<u>Exercice 3.</u>: Les simplifications demandées dans cet exercice sont à détailler précisément de façon à pouvoir être faites sans calculatrice.

a) Ecrire sous la forme $a\sqrt{b}$ où a et b sont des entiers naturels les nombres $\sqrt{32}$, $\sqrt{50}$ et $\sqrt{200}$

· · · · · · · · · · · · · · · · · · ·		•
$\sqrt{32} = \sqrt{16 \times 2}$	$\sqrt{50} = \sqrt{25 \times 2}$	$\sqrt{200} = \sqrt{100 \times 2}$
$=\sqrt{16}\times\sqrt{2}$	$=\sqrt{25}\times\sqrt{2}$	$=\sqrt{100}\times\sqrt{2}$
$=4\sqrt{2}$	$= 5\sqrt{2}$	$= 10\sqrt{2}$

b) En déduire une forme simplifiée du nombre $\sqrt{32}-5\sqrt{50}+2\sqrt{200}$

On a donc:

$$\sqrt{32} - 5\sqrt{50} + 2\sqrt{200} = 4\sqrt{2} - 5 \times 5\sqrt{2} + 2 \times 10\sqrt{2} = 4\sqrt{2} - 25\sqrt{2} + 20\sqrt{2} = -\sqrt{2}$$

c) Simplifier le nombre le nombre $\frac{\sqrt{700}}{\sqrt{7}}$ en écrivant le détail de la simplification (sans calculatrice).

$$\frac{\sqrt{700}}{\sqrt{7}} = \sqrt{\frac{700}{7}} = \sqrt{100} = 10$$

d) Simplifier le nombre $A = (3\sqrt{2} + 4)(3\sqrt{2} - 4)$ sans utiliser de calculatrice.

En utilisant l'identité remarquable $(a-b)(a+b)=a^2-b^2$, on peut dire que :

$$(3\sqrt{2}+4)(3\sqrt{2}-4) = (3\sqrt{2})^2 - 4^2 = 9 \times 2 - 16 = 2$$

Exercice 4. : On donne les expressions

$$C = (6x + 2)^2 - (1 + 4x)^2$$
 et $D = (6 - 4x)(x + 3) - (6 - 4x)(2x - 10)$. Pour chacune d'elles :

- o la factoriser,
- en déduire les valeurs de x qui permettent de l'annuler (pas de vérification demandée).

$$C = (6x + 2)^2 - (1 + 4x)^2$$

On reconnait une identité remarquable $a^2 - b^2$:

$$C = ((6x + 2) - (1 + 4x)) ((6x + 2) + (1 + 4x))$$
$$C = (6x + 2 - 1 - 4x) (6x + 2 + 1 + 4x)$$
$$C = (2x + 1)(10x + 3)$$

L'équation (2x + 1)(10x + 3) = 0 est une équation produit. Donc C = 0 seulement si

$$2x + 1 = 0$$
 ou $10x + 3 = 0$
 $2x = -1$ ou $10x = -3$
 $x = -\frac{1}{2}$ ou $x = \frac{-3}{10}$
 $x = -0.5$ ou $x = -0.3$

Donc
$$(6x + 2)^2 - (1 + 4x)^2 = 0$$
 seulement si $x \in \{-0.5; -0.3\}$

$$D = (6 - 4x)(x + 3) - (6 - 4x)(2x - 10)$$

On reconnait (6 - 4x) comme facteur commun :

$$D = (6 - 4x) ((x + 3) - (2x - 10))$$

$$D = (6 - 4x) (x + 3 - 2x + 10)$$

$$D = (6 - 4x) (-x + 13)$$

L'équation (6-4x)(-x+13)=0 est une équation produit. Donc D= 0 seulement si

$$6-4x = 0$$
 ou $-x + 13 = 0$
 $6 = 4x$ $x = \frac{6}{4} = 1,5$

Donc
$$(6-4x)(x+3)-(6-4x)(2x-10)=0$$
 seulement si $x \in \{1,5;13\}$

Exercice 5. :

Questions:

1- Si la réponse de l'élève avait été $10\,000$, quel aurait été le nombre x choisi au départ ?

Remarque: 10 000 est un carré parfait ...

- 2- Vérifie que le nombre trouvé est le bon.
- 1- Le calcul que l'élève doit faire est (x-4)x+4 . Si ce calcul donne 10 000, on obtient l'équation :

(x-4) x + 4 = 10 000

Soit en développant :

$$x - 4x + 4 = 100^{2}$$
$$x^{2} - 4x + 2^{2} = 100^{2}$$

On reconnait une identité remarquable $(a - b)^2$ et l'équation devient :

$$(x-2)^2 = 100^2$$

Donc

Soit

x - 2 = 100 ou x - 2 = -100

Donc x = 102 ou x = -98

Comme x est un entier naturel, on retient x = 102

2- On vérifie la validité de ce résultat :

$$(102 - 4) \times 102 + 4 = 98 \times 102 + 4 = 996 + 4 = 10000$$

On retrouve bien la valeur de 10000. Le résultat est donc bien le bon.